郑州市白沙园区通商路等4条道路工程监理招标公告

百度 相较于其他姿势,坐下的动作显得更放松和舒服,也能够随意发挥,照片就更加自然啦!只要坐姿好看,既显瘦又很慵懒,即使随便一个地方都能拍出浓郁的法式风情,快看大表姐坐姿,真的学到了!露半张脸要说女孩子拍照最担心的是什么,就是显!脸!大!而大表姐最经典的露半张脸拍照姿势,绝对值得女孩子们的学习!不仅脸瞬间变小,也让整个人的气质变得妩媚又有些小性感。

Computes the Approximate Minimum Degree (AMD) ordering of input.

Computes the Approximate Minimum Degree (AMD) ordering for a sparse matrix.

The returned permutation may be used to permute the rows and columns of the given sparse matrix. This typically results in permuted sparse matrix's sparse Cholesky (or other decompositions) in having fewer zero fill-in compared to decomposition of the original matrix.

The input sparse matrix may have rank 2 or rank 3. The output Tensor, representing would then have rank 1 or 2 respectively, with the same batch shape as the input.

Each component of the input sparse matrix must represent a square symmetric matrix; only the lower triangular part of the matrix is read. The values of the sparse matrix does not affect the returned permutation, only the sparsity pattern of the sparse matrix is used. Hence, a single AMD ordering may be reused for the Cholesky decompositions of sparse matrices with the same sparsity pattern but with possibly different values.

Each batch component of the output permutation represents a permutation of N elements, where the input sparse matrix components each have N rows. That is, the component contains each of the integers {0, .. N-1} exactly once. The ith element represents the row index that the ith row maps to.

Usage example:

    from tensorflow.python.ops.linalg.sparse import sparse_csr_matrix_ops

    a_indices = np.array([[0, 0], [1, 1], [2, 1], [2, 2], [3, 3]])
    a_values = np.array([1.0, 2.0, 1.0, 3.0, 4.0], np.float32)
    a_dense_shape = [4, 4]

    with tf.Session() as sess:
      # Define (COO format) SparseTensor over Numpy array.
      a_st = tf.sparse.SparseTensor(a_indices, a_values, a_dense_shape)

      # Convert SparseTensors to CSR SparseMatrix.
      a_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix(
          a_st.indices, a_st.values, a_st.dense_shape)

      # Obtain the AMD Ordering for the CSR SparseMatrix.
      ordering_amd = sparse_csr_matrix_ops.sparse_matrix_ordering_amd(sparse_matrix)

      ordering_amd_value = sess.run(ordering_amd)

ordering_amd_value stores the AMD ordering: [1 2 3 0].

input: A CSRSparseMatrix.

input A Tensor of type variant. A CSRSparseMatrix.
name A name for the operation (optional).

A Tensor of type int32.